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Abstract

This paper presents an integer programming model
for dynamic channel assignment (DCA) under space
and time-varying traffic demand. The algorithm min-
imizes the number of channels required to satisfy the
traffic demand using a threshold based decision cri-
teria on the carrier-to-interference ratio. A neighbor-
hood based search procedure uses the most recent
channel state information to perform a feasible as-
signment when the demand changes. This technique
accelerates the convergence of the algorithm to a lo-
cal minima and allows an evaluation of channel gains
obtained with increasing neighborhood sizes. This
procedure will also minimize the number of chan-
nel reassignments in cells whose demand is time-
invariant. The performance of the channel assign-
ment algorithm (SA) is examined relative to the spa-
tial distribution of the cells with time-varying de-
mand. Channel gains obtained with DCA relative to
the SA scheme range from 30 —40% for the examples
discussed.

1 Introduction
Wireless cellular networks are bandwidth and power

limited. A finite frequency spectrum is available for
provision of commercial services. Based on the ser-
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vice requirements, the allocated spectrum is divided
into a number of channels. Channels are assigned
to geographical regions based on expected traffic de-
mand. The reuse of frequencies at distances large
enough to minimize co-channel interference is a basic
design principle in cellular networks. Most existing
networks have a fixed number of channels assigned
(FCA) permanently to each cell for its exclusive use.
This arrangement is inefficient for wireless transmis-
sion of packet voice, video and data services. The
support of these multimedia applications is the fo-
cus of third and fourth generation wireless systems.
The traffic patterns that characterize packet data and
video have been found to exhibit high temporal vari-
ability [6, 5]. In particular, such packet traffic exhibit
persistence in both underload and overload states for
durations longer than that predicted by classical neg-
ative exponential distributions. This state-of-affairs
will lead to both under utilization of resources and
higher blocking with FCA schemes for bursty traf-
fic sources. The requirement of larger channel band-
widths for broadband transmission will also impose
a stringer requirement on optimal allocation of chan-
nel resources. Dynamic channel assignment (DCA)
schemes that can perform at the time-scale of traffic
variation are therefore an important component in fu-
ture wireless networks. Channel assignment schemes
that minimize the overhead involved in reassignment
of existing calls, while maximizing channel utilization
are of particular interest.

A comprehensive survey of fixed, dynamic and
hybrid channel assignment schemes is provided by



Katzela et. al. [7]. The simplest modifications to
FCA are based on borrowing channels from the rich-
est neighboring cells to minimize future call blocking
probability. Anderson [1] discusses simulation stud-
ies of these algorithms and shows that the number
of search steps required can limit the performance of
the approach. Modifications to reduce the number
of search steps have also been considered [2]. This
involves channel ordering schemes where the fixed-
to-borrowable channel ratio is dynamically varied ac-
cording to changing traffic conditions.

In DCA there is no fixed relationship between
channels and cells and all channels are available for
assignment to all cells. Channel assignment takes
place through minimization of a cost function such
as the allocated bandwidth under the constraint that
channel reuse takes place above specified interference
levels. Many algorithmic approaches have been pro-
posed for achieving the objective function subject to
the set constraints. Murphey et al. [4] provide a com-
prehensive survey of these algorithms. They may be
broadly classified as graph theoretic, meta-heuristic
search based techniques and mathematical program-
ming approaches. In the graph-theoretic abstraction
of the problem each transmitter is represented by a
node in a graph and two transmitters share a graph
edge if using the same channel could create inter-
ference. Graph coloring approaches and Integer pro-
gramming (IP) formulations have been used to tackle
this graph problem [8]. Capone et. al. [3] propose a
tabu search to determine the solution that is beyond
locally optimal. This meta-heuristic search technique
for exploring the solution space relies heavily on the
collection and management of search history data to
minimize reexploration of unproductive parts of the
search space. Tabu search is not guaranteed to pro-
duce an optimal solution and there are not, in gen-
eral, any guarantees about the closeness of its so-
lution to the optimal value. This is in contrast to
mathematical programming techniques and is also in
contrast to approximation algorithms, which guar-
antee that their solutions are within some known
factor of optimal. Heuristics can also be used to
provide starting bounds for mathematical programs
resulting in hybrid optimization approaches. Smith
et. al. [9] use neural-networks, simulated annealing

and steepest descent heuristics to solve a nonlinear
integer-programming (IP) formulation of the assign-
ment problem.

Although a variety of algorithmic models and solu-
tion techniques have been proposed for DCA, the per-
formance of such algorithms in the context of vary-
ing traffic demand has been examined to a lesser
extent. Argyropulos [10] et. al. showed that in
the presence of spatial load-imbalance DCA produced
much greater improvements in the performance than
FCA relative to gains for uniform load distribution.
Everitt and Mansfield [11] assumed that the mean
traffic in each cell is Gaussian distributed and showed
the DCA is more resilient to traffic volatility than
FCA. In this paper an integer programming model for
a centralized frequency assignment problem is pro-
posed. The objective is to minimize the number of
channels used. The assignment is to satisfy a time-
varying demand where the demand for a given trans-
mitter/cell is often larger than one. The distance
between transmitters is used to control co-channel
interference. Two transmitters are assigned the same
channel only if there is sufficient distance between the
transmitters. The selection of constraints for channel
reuse is based on the C/I ratio for a given frequency,
where C is signal to be acquired and I represents sum
of interfering signals. This IP model will be used to
perform channel assignments with temporal variation
in the demand. For a grid of square cells, a time-
step simulation is used that invokes a traffic demand
model for each time step. The traffic demand is fed
as input to a channel assignment model that seeks
the smallest number of channels satisfying the traffic
demand for that time step.

Section 2 discusses the demand models; these are
based on discrete-time, finite state Markov chains.
Section 3 presents the channel assignment model; this
is based on integer programming. Section 4 presents
results of dynamic channel assignment. Section 5
concludes the paper.

2 Traffic Demand Model

The influence of bursty traffic sources on dynamic
channel allocation will be examined in relation to



their spatial distribution and temporal variation.
Each cell is assumed to generate either constant bit
rate (CBR) of C' demand units per second or a vari-
able bit rate (VBR) demand where transition from C
to V demand units occur randomly in time. It is as-
sumed that in the starting state, each cell is assigned
C' channels. The channel holding time is one time
unit. Overload conditions occur when one or more
sources are in the VBR state V. For packet data,
a limited queueing space is often available to facili-
tate channel search, allocation and setup procedures.
A VBR cell that persists in the overload state for a
finite time therefore demands an increasing number
of channels in each successive time step. This is the
traffic scenario considered in this study.

The demand generated by each cell is independent
of the traffic in other cells. VBR traffic is modeled
using a two-state discrete time Markov chain. This
traffic model is easily extended to larger number of
states. Markov chains afford a tractable model for
controlling the level of temporal correlation in the
traffic. The correlation measure used in this work
is the expected time a source remains in the over
load state. If the probability of transition from V'
to C' demand units is 3, the expected duration in
the overload state is Tor, = #~'. Dynamic channel
allocation will be examined for an increasing range of
Tor :1,2...10.

The minimum channel requirement is also highly
dependent on the spatial distribution of the VBR
sources. To demonstrate this effect three representa-
tive spatial distributions R;, R> and Rj3 are overlaid
on a 7 x 7 grid of square cells as shown in Figs. 1(a-
c¢). The ratio of the number of VBR to CBR cells is
fixed at 10%. The channel requirements with time
are a function of the number of VBR cells that exist
within the frequency reuse distance. R; and R» rep-
resent extreme cases of deterministic spatial configu-
ration where the distance between VBR type cells is
maximum and minimum respectively, relative to the
grid size. Rj3 is an example of a randomly distributed
configuration. The performance of the IP model de-
scribed in Section 3 will be examined for these three
cases subject to temporal variation in demand. First
as a baseline comparison for resource utilization the
number of channels is estimated using an effective

Figure 1: (a-c)Spatial distribution of VBR sources

bandwidth calculation of the Markov sources.

Effective Bandwidth Based As-
signment for Markov Demand

2.1

The capacity requirements of independent Markov
sources multiplexed on a common set of resources
can be estimated using an effective bandwith approx-
imation. Let @), denote the infinitesimal Markov
generator of m identical multiplexed sources. This
can be determined from the M — fold Kronecker
sum of the single source generator ). Let R, de-
note the diagonal source rate matrix with elements
ri, 1 = 1,2...m representing the state dependent
channel demand. The serving capacity is C. Under
the assumption that the asymptotic decay rate of the
complementary distribution of the number waiting
Ny in the queue Pr(N, > B) =~ e~ % ™ the capac-
ity required for a specified performance constraints
[Pr(Ny > B), s] may be derived as the maximal real

eigenvalue of the matrix [QT’" + Rm].
source modeled by a two state DTMC is assigned
demand rates r; = 1 and ro = 2 respectively.
The channel capacity required for m = 1,2,3 mul-
tiplexed sources to satisfy performance constraints

The single



| Effective Bandwidth Based Allocation |

[ Tor | By [ R | Ry |
2 [11]19 B
3 |12 | 24 8
1 [ 1329 21
5 | 14 | 34 21

Table 1: Requirements under FCA

B = 1,5 = 103 was computed. These values are rep-
resented by C\p-(m). The channels required for the
three spatial configurations in Fig. 1 were determined
as C(TOL) = Copr + Z?n:l chbr(m) * Cupr (m),
where Cg» = 9 is fixed as the requirement for the
CBR cells for a reuse distance of two, NCyp,-(m) rep-
resents the number of VBR clusters of size m that
reside within the specified reuse distance. The reuse
distance considered here is consistent with the C/I
interference threshold used in the IP model. The re-
sults are given in Table I. The efficiency of DCA will
be evaluated relative to these FCA assignments.

3 Channel Assignment Model

The traffic demand for a given simulation time step
t is used to formulate the channel assignment prob-
lem as an IP model. The overall approach is first
described, followed by the specifics of the IP model.

3.1 Approach

IP(t) denotes the minimum number of channels
found by the assignment model for time step t. The
assignment generated by time step ¢t —1 is used to in-
fluence the assignment approach for ¢ in the following
way. For each cell(i, j) in the grid a neighborhood of
size s: Ns(i,j) = {cell(k,l) |i — k| < s,|7 —1] < s}
is defined. For time ¢, a sequence of IP models are
solved in which the neighborhood size increases from
one model to the next. Let D(i,j,t) denote the de-
mand for cell(i,j) at time ¢t. For a given neighbor-
hood size, D(i, j,t) is compared with D(i,j,¢t —1). If
the demand has changed, the assignments for cells in

Ns(i,7) are allowed to change at time t. Cells that
are not in a neighborhood of any cell whose demand
changes from time ¢ — 1 to time ¢ keep their time
t — 1 assignments at time ¢. As the neighborhood
size increases, this strategy has the effect of progres-
sively relaxing constraints on the assignment solution
space. Once the neighborhood size equals the size of
the grid, the assignments of all cells are allowed to
change. If we let IP,(t) denote the minimum num-
ber of channels that can be found by the assignment
model at time ¢ for a neighborhood of size n, then
an increasing sequence of h neighborhood sizes im-
poses the following neighborhood constraint on the
solutions: IPy(t) > IPi(t) > ... > I Py(t)

This iterative neighborhood approach is used for
two reasons: 1) to control the running time of the IP
model and 2) to allow investigation into how sensitive
a global minimum is to local demand changes. The
latter is of interest when comparing centralized DCA
with distributed/localized DCA approaches.

3.2 IP Model

A brief description of a typical minimum order fre-
quency assignment IP formulation for static demand
is provided. This is followed by a description of the
approach proposed for demand that changes in time.

3.2.1 Typical Static Demand Formulation

Minimum order frequency assignment for static de-
mand typically has two groups of binary decision vari-
ables: 1) variables that show if a given transmitter is
assigned to a given frequency, and 2) variables that
reflect whether or not a given frequency is used in the
solution. The objective function of the canonical for-
mulation minimizes the sum of the type (2) variables.
In the standard formulation, type (2) variables are
linked to type (1) variables via a set of constraints.

The notations used in the algorithm are as follows:

t : time and cell(i, j):cell at row i and column j.

The parameters and precalculated values are:

r = number of rows in the cell grid

¢ = number of columns in the cell grid

q = number of frequencies

B = interference threshold value



e = tolerance for small values

a = path-loss exponent,

D(i,j,t) = traffic demand at time t for cell(i, 7).
This is calculated as described in Section 2.0.

d(i,j, k,1) = Euclidean distance from cell(i, j) to
cell(k,1).

S(i,j, k,l) = strength of the signal received due to
transmission between cell(i,7) and cell(k,1).

The co-channel interference between cell(i, j) and
cell(k,) is calculated as:

. 1
S, j, k,1) = W (1)

The integer binary decision variables are:

otherwise

for 1< f<gq 1<ik<r, 1<jl<c ()

The first block of constraints in Eq. (6) links the
binary variables A(i, 7, f) that show if a given trans-
mitter is assigned to a given frequency to the binary
variables a(f) that reflect whether or not a given fre-
quency is used in the solution. There are grc of the
first type (assignment) variables, g of the second type,
and ¢ linking constraints. The second block of con-
straints in Eq. (8) is the set of demand constraints.
There are rc of these constraints. The third block
in Eq. (7) contains frequency-distance interference
constraints. There are grc of these constraints. Note
that all of the constraints are linear. The third block
of constraints is a linearization of a set of nonlinear
constraints. Since one transmitter is assumed per re-
gion and rc is the number of regions, the number of

A(i,j, f) = { 1 if frequency f assigned cell(i, j) gyariables and constraints is proportional to the prod-
) ) 0

) = { 0 Li)therwise ¥

The model can be stated as follows:
q
min Z a(f) (4)
f=1
subject to:
(@)a(f) =D A@G,4,) >0
(2]

for1<f<g¢gl1<i<rl<j<c

()

q
> A(i,j, f) > D(i,j,t) for1<i<r, 1<j<c
f=1

(6)
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uct of the number of frequencies times the number of
transmitters. This is consistent with IP model sizes
surveyed in [4].

However, since the size of the model is a function of
the number of channels, one challenge of IP channel
assignment, as noted in [4] is to provide a reasonable
initial upper bound on the number of channels. The
model for time ¢ is clearly feasible if the initial upper
bound is equal to: E” D(i,j,t). However, if the up-
per bound is too large the size of the model may make
it difficult for an IP solver to provide a timely solu-
tion. On the other hand, if the bound is too small
the model becomes infeasible. A greedy sequential
assignment (SA) algorithm is used to provide an ini-
tial upper bound on the number of channels that is
not necessarily optimal. The algorithm is based on
a sequential and fair assignment strategy that uses
the same frequency-distance interference conditions
as the IP model. The SA scheme traverses the cells
in a sequential order assigning one channel to each
cell subject to the interference threshold constraint.
This round-robin allocation is repeated until all the
cells have the required demand.

3.2.2 Neighborhood Constraints for Time-
Varying Demand

For each point in time and a given number of avail-
able channels, the IP model is solved using the



Mixed Integer Programming solver component of the
CPLEXT7.0™ optimization software package. As
discussed in Section 3.1, for time ¢ the solution is
obtained for a sequence of IP models of increasing
neighborhood size. Cells that are not in a neighbor-
hood of any cell whose demand changes from time
t — 1 to time t keep their time ¢t — 1 assignments at
time t. If cell(i, j) will keep its time ¢t — 1 assignment,
an additional constraint of the form: A(i,j, f) = v,
is included in the model, where v is the value of the
time ¢ — 1 assignment.

4 Results

The IP model was solved for the three spatial con-
figurations of VBR cells shown in Fig.1l. In cases
where the number of channels corresponding to the
best integer solution remained constant over a large
number of nodes in the Branch and Bound search,
the search was terminated early. In these cases the
solution is not necessarily optimal so the neighbor-
hood constraint on the solutions is not necessarily
enforced. For each spatial configuration, the demand
generated by the marked cells increased at a uniform
rate in time. The number of channels required at
this sustained demand rate was determined in each
time step using the neighborhood based restriction
discussed above. The channel requirement IP,(t)
was obtained for ¢ = 1,2..10 for n = 0,1,2. The
largest neighborhood size for a cell is given by the
minimum distance to another VBR cell.

Figs. 2(a-c) depict the solutions obtained. For
each case, the upper-bound solution of the sequential
assignment SA algorithm is compared with the best
I P solution across neighborhoods and that obtained
with neighborhood size n = 0 denoted IP.

The demand service rate was set equal to C' units
per unit time interval. The path-loss exponent o =
3.5 and the CIR threshold value B = 27234, results
in reuse distances greater than or equal to two cells.
The traffic dispersion due to VBR sources that result
in overload conditions is % = 2 . The rate of in-
crease in number of channels required is a function of
the average size of the CBR neighborhood around a
VBR cell and the reuse distance allowed by the CIR
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Figure 2: Channel requirements using DCA

constraint. For CBR neighborhoods greater than the
reuse distance, the increase in required channel ca-
pacity is simply the excess arrival rate A = 1 in one
VBR cell. This is one channel for the example in Fig.
2(a). All three solutions exhibit this expected trend.
The IP result is seen to converge to the local neigh-
borhood based solution for large ¢. In case R, a VBR
cluster size V,; = 3 exists within the reuse distance.
Therefore the solutions follow the expected increase
of Vg x A = 3. The configuration in Rz having a clus-
ter size of V,; = 2 also exhibits the expected channel
requirement rate of 2 channels per time unit.



In comparison to SA schemes, IP models are seen
to provide channel gains ranging from 30 —40%. Rel-
ative to FCA assignments using effective bandwidth
estimates, the channel gains range from 15 — 40%,
the larger gains result for spatial configurations with
VBR clusters. The presence of two distinct trends for
small and large ¢ occurs due to the enforcement of the
frequency reuse constraints. The slower rate of in-
crease in channel requirements for small time results
from the existence of assigned frequencies in CBR
cells that are reused in V BR cells when their demand
increases. There is an upper limit to the number of
such available frequencies, that depends on the grid
size. When the demand exceeds this reuse availability
for large time, new channels demanded are assigned
exclusively in the VBR cells. This is also the reason
why the IP and I P, solutions exhibit differences in
the small time regime. The reassignment of existing
frequencies is achieved only when the neighborhood
size is increased beyond zero.

In any dynamic assignment scheme a significant
overhead results when existing assignments have to
be inter-changed to enable optimal assignments. The
improvement achieved relative to a localized neigh-
borhood constraint must be evaluated to determine
if the maximum packing algorithms are warranted.
In the examples considered, the efficiency of maxi-
mal packing is seen to be improved by less than 10%.
This feature is however a function of the spatial dis-
tribution of the VBR sources.

5 Conclusions

The computational difficulty of channel assignment
for large problems makes it difficult to obtain op-
timal results. Based on this, one might intuitively
expect minimizing the number of reassignments and
minimizing the number of channels to be competing
goals requiring a tradeoff. While this might actu-
ally be true for optimal solutions, our work suggests
that exploiting locality of demand changes can al-
low these goals to be synergistic for dynamic chan-
nel assignment. The dynamic channel assignment al-
gorithm proposed shows that the achievable channel
gains depend on the spatial configuration of the cells

with time-varying demands. In particular, the solu-
tions can be reasonably well predicted using geomtric
descriptions of the spatial distribution. The results
suggest that the monitoring and measurement of traf-
fic descriptors based on space and time locality can
increase the efficiency of implementation of mathe-
matical programming algorithms.
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