Free Space Optical Communications

 

 

This work examines dispersion caused by diffraction through uniform volume holographic gratings. Of interest is the impact of this dispersion on the spatial and temporal fidelity of an optical communications signal. To this end, a holographic grating is illuminated by a Gaussian beam with 1/e2 diameter large compared to the optical wavelength. Coupled-wave analysis is used to calculate the temporal response of the grating to transmitted symbols encoded in time as a train of Gaussian-shaped pulses. It is shown that temporal dispersion due to diffraction impacts bit-error performance, yielding increased power penalty for larger diffraction angles and beam diameters. Supported by NSF, MIT Lincoln Labs

 

1.     J.M. Tsui, C. Thompson, J.M. Roth, Propagation of data-modulated Gaussian beams through a holographic optical element, Opt. Express, (17) 5556-5570 2009

2.     J.M. Tsui, C. Thompson, J.M. Roth, Optical phased array power penalty analysis of apodized, Opt. Express, (15) 5179-5190 2007

3.     J. M. Tsui, C. Thompson, V. Metha, J.M. Roth, V.I. Smirnov and L.B. Glebov, Coupled-wave analysis of an apodized volume grating, Proc. SPIE Int. Society Opt Eng. 5970, 59700V 2005

4.     J.M. Tsui, C. Thompson, V. Mehta, J.M. Roth, V.I. Smirnov and L.B. Glebov, Coupled-wave analysis of apodized volume gratings, Opt. Express, (12), 6642-6653 2004