Bayesian Sequential Learning: Gaussian Models

Develop a program for determining the predictive probability distribution for predicting the target value \(t_n = w_0 + w_1 x + \epsilon \) where \(\epsilon \sim N(0, \beta^{-1}) \) using Bayesian models. Present the results first for the case (a) One unknown: \(w_0 = 0, w_1 \) unknown; and then for the two-parameter estimation: (b) Both \(w_0, w_1 \) are to be estimated.

A summary of the steps to be carried out is given below. This is given for the one parameter case. Let \(w_1 = w. \)

(a) Create a prior distribution for \(w : N(0, \frac{1}{\alpha}) \); You can select for example a range of \(w \) : \(-\hat{w}, \hat{w} \) and prescribe the zero-mean Gaussian distribution for the selected \(\alpha \) over this range of \(w \).

(b) Generate a set of target values \(t_n, = wx_n + \epsilon_n \ n = 1, 2, \ldots N \)

(c) Using the first target value (\(n=1 \)) compute the likelihood function : \(p(t_1 | x, \beta, w) : N(wx_1, \beta^{-1}) \). The likelihood function is the Gaussian probability for the observed value \(t_1 \) with a mean value of \(w x_1 \). Since \(t_1, x_1 \) known and \(w \) unknown, the likelihood function is to be represented as a function of \(w \), typically over the same range selected in (a).

(d) Multiply the prior in (a) with the likelihood in (c) and normalize it so that it represents a pdf. This is the posterior distribution. Plot this function again as a function of \(w \) and observe the change in the shape of the posterior.

(e) Repeat the step in (c) for second target value \(n = 2 \) to get the likelihood function for the second data point.

(f) Multiply the result of (e) with the posterior distribution computed in (d) and normalize the result, to obtain a new Bayesian posterior function of \(w \). Plot this as a function of \(w \) and observe the changes.

(g) Repeat steps of computing the likelihood function for each new target value \(t_n \) and multiplying it with the posterior function obtained from the previous iteration.

If done right, the posterior distribution of \(w \) should converge to approximately a delta function centered around the actual value of \(w \) as the number of training points increase.

Once determined, the posterior distribution can be used to determine the predictive distribution of \(y \) for test data. The predictive distribution is obtained as ,

\[
p(t|t, \alpha, \beta) = \int_{-\infty}^{\infty} p(t|w, \beta) p(w|t, \alpha, \beta) \ dw \quad (1)
\]