EIGEN — eigenvalues and eigenvectors of a general real matrix

Purpose:
EIGEN finds all the eigenvalues and eigenvectors of an \(N \) by \(N \) matrix, \(A \).

Usage:
CALL EIGEN (\([NM, N, A, WR, WI, Z]\))

- **NM** \(\rightarrow \) the row dimension of the two-dimensional arrays, \(A \) and \(Z \), as specified in the dimension statements for \(A \) and \(Z \) in the calling program.
- **N** \(\rightarrow \) the order of the matrix, \(A \).
 \(N \) must not be greater than \(NM \).
- **A** \(\rightarrow \) the matrix, a two-dimensional array with row dimension \(NM \) and column dimension at least \(N \).
 \(A \) is overwritten during the solution.
- **WR** \(\leftarrow \) a vector of dimension at least \(N \), containing the real parts of the eigenvalues.
- **WI** \(\leftarrow \) a vector of dimension at least \(N \), containing the imaginary parts of the eigenvalues.
 For the complex eigenvalues, the conjugate pairs are ordered so that the eigenvalue with positive imaginary part appears first in \((WR, WI) \).
- **Z** \(\leftarrow \) a two-dimensional array with row dimension \(NM \), and column dimension at least \(N \), containing the real and imaginary parts of the eigenvectors.
 If the j-th eigenvalue is real, the j-th column of \(Z \) contains its eigenvector.
 If the j-th eigenvalue is complex with positive imaginary part, the j-th and (\(j+1 \))-st columns of \(Z \) contain the real and imaginary parts of its eigenvector. The conjugate of this vector is the eigenvector for the conjugate eigenvalue.
Error situations: *(The user can elect to ‘recover’ from those errors marked with an asterisk — see Error Handling, Framework Chapter)

<table>
<thead>
<tr>
<th>Number</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$N > NM$</td>
</tr>
<tr>
<td>$K*$</td>
<td>the K-th eigenvalue could not be computed after 30 iterations (the number set in [3, page 7.1-232]). The eigenvalues in the WR and WI arrays should be correct for indices, $K+1, K+2, \ldots, N$, but no eigenvectors have been computed.</td>
</tr>
</tbody>
</table>

Double-precision version: DEIGEN, with A, WR, WI, and Z declared double precision.

Storage: N real (or double-precision for DEIGEN) locations in the dynamic storage stack are used.

Method: EIGEN calls the three subroutines, ORTHE, ORTRA, and HQR2, which, in turn, are the EISPACK [2] routines, ORTHES, ORTRAN, and HQR2, (For the double-precision version, DEIGEN, the EISPACK routines have been adjusted for double precision.)

ORTHE and ORTRA transform the original matrix to upper Hessenberg form, using a sequence of orthogonal transformations. (ORTRA accumulates the transformations.) HQR2 uses the QR algorithm [1] with double origin shifts, to find the eigenvalues, and then finds the eigenvectors by back substitution.

Author: Phyllis Fox (and EISPACK)

Example: The program below finds the eigenvalues and eigenvectors of the following matrix (from [5] pages 394-395):

\[
\begin{pmatrix}
3 & 1 & 2 & 5 \\
2 & 1 & 3 & 7 \\
3 & 1 & 2 & 4 \\
4 & 1 & 3 & 2
\end{pmatrix}
\]

```plaintext
REAL A(4,4), ORT(4), Z(4,4)
REAL H(4,4), WR(4), WI(4)
C
DATA A(1,1), A(1,2), A(1,3), A(1,4) / 3., 1., 2., 5. / 
DATA A(2,1), A(2,2), A(2,3), A(2,4) / 2., 1., 3., 7. / 
DATA A(3,1), A(3,2), A(3,3), A(3,4) / 3., 1., 2., 4. / 
DATA A(4,1), A(4,2), A(4,3), A(4,4) / 4., 1., 3., 2. / 
C
NM=4
N=4
C
SET OUTPUT WRITE UNIT
C
IUNIT=I1MACH(2)
C
CALL EIGEN(NM,N,A,WR, WI, Z)
C
WRITE (IUNIT,96)
96 FORMAT (22H0THE EIGENVALUES ARE -/) 
C
WRITE (IUNIT,97) (WR(J), WI(J), J=1,N)
```
The results, obtained on the Honeywell 6000 computer at Bell Labs, are as follows:

THE EIGENVALUES ARE -

0.10591982E+02 0.
0.19134652E+00 0.
-0.23663033E+01 0.
-0.41702519E+00 0.

THE SCALED EIGENVECTORS ARE -

-8.57984252E-01 -2.95050379E-01 3.60162705E-01 1.12082377E-02
-1.00000000E+00 1.00000000E+00 1.00000000E+00 -1.00000000E+00
-7.83458382E-01 1.06375527E-01 9.60507886E-02 2.41136307E-01
-7.89376915E-01 -7.68113406E-02 -6.24968752E-01 9.58856940E-02