Problem One:
Given two double precision vectors \(x \) and \(y \) write a function that returns the scalar product in the double precision variable \(w \).
\[
W = \text{ddot}(n, x, y)
\]
- \(W \) - REAL*8 return variable
- \(N \) - INTEGER number of products to be summed
- \(X \) - REAL*8 array of dimension \(n \)
- \(Y \) - REAL*8 array of dimension \(n \)

Problem Two:
Given a double precision matrix \(A \), two double precision vectors \(x \) and \(y \), and two double precision scalars \(\alpha \) and \(\beta \), write a single subroutine that returns one of the follow double precision vectors replacing the vector \(y \).
\[
y \leftarrow \alpha Ax + \beta y \text{ or } y \leftarrow \alpha A^T x + \beta y
\]
- \(\text{SUBROUTINE DGEMV} \) (TRANS, M, N, ALPHA, A, LDA, X, BETA, Y)
 - \(TRANS \) - INTEGER entry, \(TRANS \) specifies the operation to be performed as follows:
 - \(TRANS = 0 \) y := \(\alpha \)A\(x \) + \(\beta \)y.
 - \(TRANS = 1 \) y := \(\alpha \)A\(T x \) + \(\beta \)y.
 - \(M \) - INTEGER. On entry, \(M \) specifies the number of rows of the matrix \(A \).
 M must be at least zero.
 - \(N \) - INTEGER. On entry, \(N \) specifies the number of columns of the matrix \(A \).
 - \(ALPHA \) - REAL*8 On entry, \(ALPHA \) specifies the scalar \(\alpha \).
 - \(A \) - REAL*8 array of DIMENSION (m, n).
 Before entry, the leading \(m \) by \(n \) part of the array \(A \) must contain the matrix of coefficients.
 - \(LDA \) - INTEGER On entry, \(LDA \) specifies leading dimension of \(A \).
 - \(X \) - REAL*8 Array of DIMENSION \(n \)
 - \(BETA \) - REAL*8 On entry, \(BETA \) specifies the scalar \(\beta \). When \(BETA \) is supplied as zero then \(Y \) need not be set on input.
 - \(Y \) - REAL*8 Array of DIMENSION \(m \) when \(TRANS = 0 \) and \(n \) otherwise.
 On exit, \(Y \) is overwritten by the updated vector \(y \).

Problem Three:
Given a double precision matrices \(A, B, C \), and two double precision scalars \(\alpha \) and \(\beta \), write a single subroutine that returns one of the following results replacing \(C \).
\[
C \leftarrow \alpha AB + \beta C \text{ or } C \leftarrow \alpha A^T B + \beta C \text{ or } C \leftarrow \alpha Ab^T + \beta C \text{ or } C \leftarrow \alpha A^T B^T + \beta C
\]
- \(\text{SUBROUTINE DGEMM} \) (TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
TRANSA - INTEGER
On entry, TRANSA specifies the form of op(A) to be used in
the matrix multiplication as follows:
 TRANSA = 0, A.
 TRANSA = 1, Aᵀ

TRANSB - INTEGER
On entry, TRANSB specifies the form of op(B) to be used in
the matrix multiplication as follows:
 TRANSB = 0, B.
 TRANSB = 1, Bᵀ

M - INTEGER On entry, M specifies the number of rows of the matrix
 op(A) and of the matrix C.
N - INTEGER On entry, N specifies the number of columns of the matrix
 op(B) and the number of columns of the matrix C.
K - INTEGER. On entry, K specifies the number of columns of the matrix
 op(A) and the number of rows of the matrix op(B).

ALPHA - REAL*8 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

A - REAL*8 array
LDA - INTEGER leading dimension of A.

B - REAL*8 Array
LDB - INTEGER leading dimension of B

BETA - REAL*8 On entry, BETA specifies the scalar beta.

C - REAL*8 Array
LDC - INTEGER leading dimension of C