1. Consider the system defined by the ODE:
\[y''' + 6y'' + 11y' + 6y = u(t) \]
where \(y \) is the output and \(u \) is the input of the system. Obtain a state-space representation of the system in terms of (a) phase variables and (b) canonical variables.

2. Given the state matrix \(A \)
\[
A = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
-6 & -11 & -6 \\
\end{bmatrix}
\]
the input matrix \(B \)
\[
B = \begin{bmatrix}
0 \\
0 \\
6 \\
\end{bmatrix}
\]
the output matrix \(C \)
\[
C = \begin{bmatrix}
1 \\
0 \\
0 \\
\end{bmatrix}
\]
and the transformation matrix
\[
P = \begin{bmatrix}
1 & 1 & 1 \\
-1 & -2 & -3 \\
1 & 4 & 9 \\
\end{bmatrix}
\]

a. Determine the transfer function where \(y \) is the output and \(u \) is the input.

b. Determine the eigenvalues of the matrix \(A \). How do they relate to the transfer function obtained in part (a).

c. If the transformation \(\tilde{x} = P\xi \) is made, determine the new system equations.

3. Consider the phase variable representation of the system matrix \(A \)
\[
A = \begin{bmatrix}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 \\
\ddots & \ddots & \ddots & \ddots & \ddots \\
-a_n & -a_{n-1} & -a_{n-2} & \ldots & -a_1 \\
\end{bmatrix}
\]

Show that the transformation matrix \(P \), if \(A \) has distinct eigenvalues is

\[
P = \begin{bmatrix} e_1 | e_2 | \ldots | e_n \end{bmatrix}
\]

where each column is comprise of the eigenvalue raised to a power.

\[
e^T_m = \begin{bmatrix} \lambda_m^0 & \lambda_m^1 & \lambda_m^2 & \ldots & \lambda_m^n \end{bmatrix}
\]

In such a case \(P^{-1}AP = \Lambda \) where \(\Lambda \) is diagonal matrix comprised of the eigenvalues of matrix \(A \).

4. Consider the frictionless pendulum moving on a flat surface. The objective is to hold the pendulum vertical for small displacements in angle.

\[
\frac{4}{3} ml^2 \theta'' + mly'' + mgl\theta = 0
\]

\[
ml\theta'' + (M + m)y'' = u
\]

where \(M = 3 \text{ kg}, \ l = 2 \text{ meters} \ , m = 1 \text{ kg} \ \text{and} \ g = 9.8 \text{ meters/sec}^2 \). If \(x_1 = \theta \), \(x_2 = \theta' \), \(x_3 = y \) and \(x_4 = y' \).
a. Write the state equations $\dot{x} = Ax + Bu$ Note the system can be reduced to two independent state-variables x_1 and x_2 by substitution for y in the first equation.

b. Find the eigenvalues of A.

c. Find the eigenvectors of A.

d. Find the similarity transformation, P such that $P^{-1}AP = \Lambda$.

e. Determine the controllability of the system.

f. Determine the matrix C required for observability if one observation is made $y = Cx$.