1. Consider the coupled acoustic-mechanical system. The velocity of the masses are given by u and applied force by the variable f. The variables k represent the mechanical stiffness, M the mass and b the damping coefficient. The open pipe has cross sectional area A, length L and exit volume velocity Q_2

![Diagram of the coupled acoustic-mechanical system]

- **a.** Using mobility analogy where the velocity as the "across" variable, determine the an equivalent circuit for the system.
- **b.** Determine the equations of motion in the Laplace-domain.
- **c.** Determine the equations of motion in the time-domain.
- **d.** Find the transfer function $Q_2(s)/U_o(s)$.

EECE4130/16.413 Problem Set #2
2. Consider the acoustical system where a rigid piston having a cross sectional area A and mass M is moved at the velocity u_0. The piston is placed in a rigid walled cavity having volume V. A tube allowing enclosed air to exit the cavity is provided. The tube has a cross section area A_1 and length L.

 a. Using mobility analogy where the velocity as the "across" variable, determine the equivalent circuit of the system.

 b. Determine the equations of motion in the Laplace-domain.

 c. Determine the equations of motion in the time-domain.

 d. Find the transfer function Q_1/U_0.

2